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Abstract

Multi-agent AI systems face documented failure rates of 41-86.7% due
to architectural issues rather than AI limitations. We present AYA, a
reference architecture that addresses these failure modes through
structural constraints: Pure Message Architecture (PMA) requiring all
agent communication through a centralized message bus, centralized
routing for system-wide observability, and single-responsibility
agent design. Our heterogeneous agent mesh includes both LLM-based
agents (300-2000ms latency) and lightweight specialized agents (sub-
100ms) for routing, caching, and data retrieval. Internal testing
shows message bus throughput exceeding 10,000 messages/second with
sub-10ms routing latency for non-LLM operations, though end-to-end
user response times remain dominated by LLM inference (1-2 seconds).
The architecture draws from established distributed systems patterns—
service mesh, message-passing concurrency, and microservices
principles—applied to multi-agent coordination. We discuss
limitations including routing overhead, architectural complexity, and
unsuitability for simple use cases. Independent validation is
welcomed and supported.

Keywords: multi-agent systems, enterprise AI, message-oriented
architecture, LLM coordination, distributed systems



Executive Summary

The Multi-Agent Imperative

Multi-agent AI systems have transitioned from academic curiosity to
enterprise imperative. The momentum is substantial: Gartner reports a
1,445% surge in multiagent systems (MAS) inquiries from Q1 2024 to Q2
2025 [1]. By 2028, an estimated 33% of enterprise software
applications will include agentic AI capabilities, up from less than
5% in 2025 [1].

The economic potential is significant. McKinsey projects that AI
agents could generate substantial economic value, with estimates
suggesting up to $2.9 trillion per year in the United States alone
under optimistic scenarios by 2030 [2]. However, these projections
carry significant uncertainty and depend on successful implementation
at scale, particularly workflow redesign to enable human-AI
collaboration.

The Architectural Challenge

Despite this momentum, the industry faces significant implementation
challenges. Gartner predicts that over 40% of agentic AI projects
will be canceled by end of 2027 due to escalating costs, unclear
business value, and inadequate risk controls [3]. Independent
research from UC Berkeley analyzing 1,642+ execution traces found
that multi-agent systems experience 41-86.7% failure rates due to
architectural gaps—not AI limitations [4].

These statistics reveal a pattern: promising pilots that struggle to
scale, integration complexity that consumes development resources,
and observability gaps that make debugging difficult.

The AYA Architecture

This paper presents the AYA architecture, a multi-agent system design
that addresses common failure modes through architectural
constraints. Rather than offering guidelines, AYA provides structural
constraints enforced at the code level.

The architecture rests on three foundational principles:

1. Pure Message Architecture (PMA): All agent-to-agent communication
occurs through a centralized message bus. This principle reduces



coupling between agents, inspired by patterns that have proven
effective in microservices architectures [5].

2. Centralized Agent Routing: A centralized routing agent manages
message flow, enabling decentralized development while
maintaining system-wide observability. This mirrors service mesh
patterns used by organizations like Google and Microsoft [6].

3. Single Responsibility Agent Design: Each agent has one primary
responsibility, with cross-cutting concerns (logging, metrics,
error handling) delegated to specialized agents. This addresses
the "role disobedience" and "responsibility overlap" failure
modes identified in multi-agent research [4].

Heterogeneous Agent Architecture

A critical distinction: AYA is a heterogeneous agent mesh, not a
homogeneous LLM-based system. The architecture includes:

Lightweight Agents (sub-100ms latency):

Intent Parser: Rule-based routing decisions

Cache Manager: Key-value lookups for common queries

SQL Agent: Structured data retrieval

Message Router: Forwarding logic and capability matching

Authentication/Authorization: Policy checks

LLM-Based Agents (300-2000ms latency):

Natural Language Generation

Complex reasoning tasks

Unstructured data analysis

Hybrid Agents:

Use lightweight logic for common cases

Escalate to LLM only when necessary

This heterogeneity enables cost and performance optimization: most
operations bypass expensive LLM inference, with LLM agents invoked
only when semantic understanding is required.

Key Results from Reference Implementation



Performance benchmarks from our internal testing demonstrate the
following results:

Metric Result Test Conditions

Message Bus
Throughput

>10,000
messages/second

Mixed agent types, in-memory
bus

Routing Latency (avg) <10ms Non-LLM agents, local
network

Routing Latency (p99) <50ms Under sustained load

Message Delivery 99.99% With retry mechanism enabled

Agent Failure
Isolation

High One agent crash does not
cascade

Routing Agent Restart <5 seconds Stateless design

End-to-End User
Latency

1-2 seconds typical Dominated by LLM inference
time

Critical Context: These metrics measure message bus infrastructure
performance, not end-to-end AI task completion time. A typical user
request involves:

1 LLM call (1-2 seconds)

5-10 lightweight agent interactions (5-50ms total)

Message bus overhead (negligible)

Total user-facing latency: 1-2 seconds, dominated by LLM inference as
expected in any LLM-based system.

Note: These results are from controlled internal testing conducted by
the development team and have not been independently verified.
Production performance will vary based on deployment configuration,
network conditions, workload characteristics, and LLM provider
selection. Full methodology available in Appendix E. We welcome and
will support independent reproduction efforts.

Limitations and Trade-offs

The AYA architecture is not suitable for all scenarios:



Simple use cases: Single-agent solutions may be more appropriate
for straightforward tasks. Research suggests centralized multi-
agent coordination can degrade performance on simpler tasks [7].

Ultra-low latency requirements: The message bus adds routing
overhead (~5-10ms) that may be unacceptable for certain real-time
applications requiring sub-millisecond response.

Small teams: The architectural complexity may not justify itself
for small projects or teams under 5 developers.

Token cost overhead: Multi-agent coordination can consume 15×
more tokens than single-agent approaches for equivalent tasks
[7], though the heterogeneous design mitigates this through
selective LLM usage.

These trade-offs are discussed in detail in Section 11.

Section 1: The Problem

1.1 The Rise of Multi-Agent AI

Enterprise Interest

Multi-agent AI is experiencing significant enterprise interest:

Metric Value Source

Enterprise apps with AI agents by 2026 40%
(projected)

Gartner, August
2025 [1]

Multiagent systems inquiry surge (Q1
2024 → Q2 2025)

1,445% Gartner, December
2025 [1]

Enterprises with regular AI use (at
least one function)

88% McKinsey, November
2025 [2]

Organizations experimenting with or
scaling AI agents

62% McKinsey, November
2025 [2]

Note on statistics: The 1,445% figure specifically refers to
Multiagent Systems (MAS) architecture inquiries. The 88% "regular AI
use" figure measures organizations using AI in at least one business



function; however, two-thirds have not yet begun scaling beyond pilot
deployments [2].

Common Use Cases:

Customer Service: Multi-agent systems handling complex support
workflows

Internal Operations: Specialized agents for HR, finance, and
operations tasks

Content Generation: Coordinated agents for document creation and
code generation

Research Assistance: Literature review, experiment design, and
data analysis [8]

1.2 Why Multi-Agent Systems Fail

Empirical Failure Analysis

The UC Berkeley MAST study (Cemri et al., 2025) analyzed 1,642+
execution traces across 7 popular frameworks and identified 14 unique
failure modes in three categories [4]:

Failure Category Examples Frequency

System Design Issues Role disobedience, lost
conversation history

30-40% of
failures

Inter-Agent
Misalignment

Ignored input, communication
breakdowns

25-35% of
failures

Task Verification Premature termination, incorrect
verification

20-30% of
failures

The study found failure rates ranging from 41% to 86.7% across
different frameworks and task types. Critically, these failures were
attributed to architectural issues, not fundamental LLM capability
limitations.

The Coupling Problem

Multi-agent systems can develop coupling problems similar to those
documented in microservices research [5]. With N agents communicating
directly, you have up to N × (N-1) potential connections:



Agent Count Direct Connections Complexity

5 agents 20 connections Manageable

25 agents 600 connections Challenging

100 agents 9,900 connections Difficult to maintain

Figure 1: Connection Complexity Growth

The Shared State Problem

Shared databases between agents create several challenges documented
in distributed systems literature [9]:

Problem Impact

Schema Coupling Changes to shared schema affect multiple agents

Data Contamination Unintended cross-agent data modifications

Performance Interference One agent's queries can impact others

Testing Complexity Difficult to test agents in isolation

Connections
    ^
    |                                    /
    |                                  /   Direct Calls
    |                                /     O(n²)
    |                              /
    |                           /
    |                        /
    |                    /
    |               /
    |          /
    |     /       ______________________ Message Bus
    |  /________                         O(n)
    +-----------------------------------------> Agents
        5    10   25   50   100



Research on agent memory systems suggests that agent-specific memory
approaches can outperform shared memory on certain long-running tasks
[10].

1.3 The Tool-Calling Discussion

Current Landscape

Many AI agent systems use tool-calling architectures where LLMs
directly invoke tools. This approach has trade-offs worth
understanding.

Potential Challenges:

Challenge Description Mitigation Approaches

Prompt
Injection

LLM may not reliably distinguish
data from instructions

Input validation,
sandboxing

Tool Selection
Errors

LLM may select inappropriate
tools

Capability constraints,
verification

Parameter
Issues

LLM may generate incorrect
parameters

Schema validation,
confirmation steps

Prompt injection is ranked as a significant concern in the OWASP Top
10 for LLM Applications 2025 [11].

When Tool-Calling Works Well:

Simple, well-defined tool interactions

Single-agent systems with limited scope

Rapid prototyping and experimentation

Scenarios where human review is incorporated

When Message-Based Architecture May Be Preferable:

Complex multi-agent coordination

Enterprise deployments requiring auditability

Systems requiring strong isolation guarantees

Scenarios with high security requirements



The choice depends on your specific requirements, risk tolerance, and
operational context.

1.4 Hidden Costs of Architectural Debt

Architectural decisions have long-term implications documented in
software engineering research:

Cost Category Impact Source

Deployment
Coordination

Tightly-coupled systems require more
deployment coordination

[5]

Development
Velocity

Impact analysis and integration testing add
overhead

[5]

Maintenance Burden Technical debt tends to accumulate over time [9]

These costs are not specific to multi-agent systems but apply to any
distributed architecture.

Section 2: Pure Message Architecture

2.1 The Core Principle

All agent-to-agent communication in AYA goes through a message bus.

This is an architectural constraint enforced through:

Static analysis: Linting rules detect direct agent imports

Import restrictions: Agents cannot import other agents' internal
modules

Runtime validation: Message bus rejects improperly formatted
communication

Figure 2: Pure Message Architecture



Note: Latencies shown are typical observed ranges for each agent
type. LLM Agent latency dominated by model inference time (300-2000ms
TTFT). Non-LLM agents operate in sub-100ms range.

Why This Approach:

 

┌───────────────────────────────────────────────
│                        MESSAGE BUS                                   │
│  
┌───────────────────────────────────────────────
│
│  │                   Routing Agent                               │   │
│  │  • Message routing    • Agent registry                        │   │
│  │  • Load balancing     • Capability discovery                  │   │
│  
└───────────────────────────────────────────────
│
│                              │                                       │
│    
┌────────┬────────┬───────┼───────┬────────┬────
│
│    │        │        │       │       │        │        │           │
│    ▼        ▼        ▼       ▼       ▼        ▼        ▼           │
│ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ 
┌─────┐ ┌─────────┐       │
│ │ LLM │ │SQL  │ │Error│ │ Log │ │Moni-│ │Secu-│ │Cache    │       
│
│ │Agent│ │Agent│ │Agent│ │Agent│ │tor  │ │rity │ │Manager  │       
│
│ │     │ │     │ │     │ │     │ │Agent│ │Agent│ │         │       
│
│ └─────┘ └─────┘ └─────┘ └─────┘ └─────┘ 
└─────┘ └─────────┘       │
│  300-  │  20-  │  5-   │  3-   │  8-   │  15-  │   2-            │
│  2000ms│  80ms │  20ms │  10ms │  25ms │  40ms │   8ms           │
│    │        │        │       │       │        │        │           │
│    
└────────┴────────┴───────┴───────┴────────┴────
│
│                     Agent-Specific Databases                         │
│                     (No Shared Tables Pattern)                       │
└───────────────────────────────────────────────



The theoretical foundation draws from message-passing concurrency
research (Hoare's CSP, 1978; Actor Model, 1973):

1. Isolation through communication: Components that share no state
interact only through messages

2. Observable interactions: All interactions can be logged,
monitored, and replayed

3. Failure isolation: Failure in one component is less likely to
corrupt another's state

Research suggests systems using structured message passing experience
fewer coordination failures than those allowing direct method
invocation [12].

2.2 What Pure Message Architecture Prohibits

Prohibited Pattern Reason

Direct method calls between agents Creates tight coupling

Shared databases between agents Schema coupling, data contamination

HTTP/REST calls between agents N² complexity growth

Direct WebSocket connections Bypasses centralized observability

Shared file systems Hidden communication channels

Global state Unpredictable behavior

2.3 What Pure Message Architecture Requires

1. Message Bus for All Communication

Every interaction between agents flows through the message bus,
including:

Commands and responses

Queries and results

Events and notifications

Health checks

2. Standardized Message Format



All messages conform to a validated schema. We provide both Python
and JSON Schema representations for language-agnostic implementation:

Python Implementation:

JSON Schema Representation:

python

from dataclasses import dataclass
from typing import Dict, Any, Optional
from enum import Enum

class MessageType(Enum):
    COMMAND = "command"
    QUERY = "query"
    EVENT = "event"
    RESPONSE = "response"

class Priority(Enum):
    LOW = "low"
    NORMAL = "normal"
    HIGH = "high"
    URGENT = "urgent"

@dataclass
class StandardMessage:
    message_id: str              # Unique identifier (UUID recommended)
    source: str                  # Source agent ID
    target: str                  # Target agent ID  
    message_type: MessageType    # COMMAND, QUERY, EVENT, RESPONSE
    payload: Dict[str, Any]      # Type-specific data
    timestamp: float             # Unix timestamp
    correlation_id: Optional[str] = None  # For request-response pairing
    priority: Priority = Priority.NORMAL  # Message priority
    schema_version: str = "1.0"          # Schema evolution support
    tenant_id: Optional[str] = None      # Multi-tenancy support
    trace_id: Optional[str] = None       # Distributed tracing
    idempotency_key: Optional[str] = None  # Exactly-once processing

json



{
  "$schema": "http://json-schema.org/draft-07/schema#",
  "title": "StandardMessage",
  "type": "object",
  "required": ["message_id", "source", "target", "message_type", "payload", "t
  "properties": {
    "message_id": {
      "type": "string",
      "format": "uuid",
      "description": "Unique message identifier"
    },
    "source": {
      "type": "string",
      "description": "Source agent identifier"
    },
    "target": {
      "type": "string", 
      "description": "Target agent identifier"
    },
    "message_type": {
      "type": "string",
      "enum": ["command", "query", "event", "response"],
      "description": "Type of message"
    },
    "payload": {
      "type": "object",
      "description": "Message-type-specific data"
    },
    "timestamp": {
      "type": "number",
      "description": "Unix timestamp"
    },
    "correlation_id": {
      "type": "string",
      "format": "uuid",
      "description": "Correlates request with response"
    },
    "priority": {
      "type": "string",
      "enum": ["low", "normal", "high", "urgent"],
      "default": "normal"
    },
    "schema_version": {



Enterprise-Ready Fields:

The schema includes fields essential for production deployment:

schema_version: Enables backward-compatible schema evolution

tenant_id: Supports multi-tenant deployments

trace_id: Enables distributed tracing across agent interactions
(distinct from correlation_id which pairs requests/responses)

idempotency_key: Prevents duplicate processing in retry scenarios

auth_context: (Can be included in payload) Authentication and
authorization metadata

3. Explicit Routing

The Routing Agent serves as the central routing authority:

Capability discovery: Agents register capabilities; senders
request capabilities

Load balancing: Multiple agents can provide the same capability

Failover: Automatic routing to backup agents when primary is
unavailable

      "type": "string",
      "default": "1.0",
      "description": "Message schema version for evolution"
    },
    "tenant_id": {
      "type": "string",
      "description": "Multi-tenant identifier"
    },
    "trace_id": {
      "type": "string",
      "format": "uuid",
      "description": "Distributed tracing identifier"
    },
    "idempotency_key": {
      "type": "string",
      "description": "Key for idempotent message processing"
    }
  }
}



2.4 The Message Primitives

AYA uses four message types that can express agent-to-agent
communication needs:

COMMAND: Request-Response

Synchronous, transactional communication where the sender expects a
result.

QUERY: Information Retrieval

Read-only requests where no state change is expected. Queries are
idempotent and cacheable.

EVENT: Fire-and-Forget

Asynchronous notifications where no response is expected.

RESPONSE: Completing the Loop

Correlates back to original requests with success/failure status and
results.

python

response = await comm_bus.send_command(
    target_agent="llm.agent",
    action="generate_text",
    payload={"prompt": "Hello world", "max_tokens": 100}
)

python

result = await comm_bus.send_query(
    target_agent="sql.agent",
    query_type="customer_lookup",
    parameters={"customer_id": "12345"}
)

python

await comm_bus.send_event(
    event_type="task_completed",
    event_data={"task_id": "123", "status": "success"}
)



2.5 Trade-offs

Overhead: Message routing adds latency (~5-10ms) compared to direct
calls between non-LLM agents.

Complexity: The message bus infrastructure requires setup and
maintenance.

Learning Curve: Developers must adapt to message-based patterns.

Metric Direct Calls Message Bus

Single call latency Lower Higher (+5-10ms)

System-wide debugging Distributed Centralized

Change propagation Can cascade Contained

Security audit Per-agent Centralized

For simple systems with few agents, the overhead may not be
justified. For complex enterprise systems, the benefits of isolation
and observability typically outweigh the overhead.

Section 3: Centralized Agent Routing

3.1 The Centralized Router

A single Routing Agent routes all messages, enabling system-wide
coordination without tight coupling.

Figure 3: Routing Agent Architecture



Why Centralized Routing:

This pattern mirrors the service mesh architecture (Istio, Envoy)
used at scale by major cloud providers [6]:

                    ┌──────────────────────────────┐
                    │        ROUTING AGENT          │
                    │                                │
                    │  ┌────────────────────────┐   │
                    │  │    Agent Registry       │   │
                    │  │  ┌──────────────────┐  │   │
                    │  │  │ llm.agent        │  │   │
                    │  │  │ - capabilities   │  │   │
                    │  │  │ - status: active │  │   │
                    │  │  ├──────────────────┤  │   │
                    │  │  │ sql.agent        │  │   │
                    │  │  │ - capabilities   │  │   │
                    │  │  │ - status: active │  │   │
                    │  │  └──────────────────┘  │   │
                    │  └────────────────────────┘   │
                    │                                │
                    │  ┌────────────────────────┐   │
                    │  │   Routing Logic         │   │
                    │  │  - Direct routing       │   │
                    │  │  - Capability matching  │   │
                    │  │  - Load balancing       │   │
                    │  └────────────────────────┘   │
                    └──────────────────────────────┘
                                 │
           
┌─────────────────────┼─────────────────────┐
           │                     │                     │
           ▼                     ▼                     ▼
      ┌─────────┐          ┌─────────┐          
┌─────────┐
      │ Agent A │          │ Agent B │          │ Agent C │
      └─────────┘          └─────────┘          
└─────────┘



Service Mesh Component AYA Equivalent Capability

Control Plane Routing Agent Central configuration

Service Discovery Agent Registration Dynamic capability discovery

mTLS Security Agent Secure communication

Telemetry Monitor Agent Metrics and tracing

Circuit Breaking Error Agent Failure isolation

3.2 Capability-Based Routing

Agents register capabilities; senders request capabilities rather
than specific agents.

Benefits:

Multiple agents can provide the same capability (load balancing)

New agents can be added without changing senders

Graceful degradation when agents are unavailable

Routing Strategies:

Strategy Use Case

Direct Messages to a specific known agent

Capability-Based Route to any agent providing a capability

Broadcast Event notifications to all interested agents

Multicast Deliver to a specific subset of agents

3.3 The Single Point Question

Concern: "Isn't a central hub a single point of failure?"

Response: The Routing Agent is designed to be stateless and
replaceable:

Stateless design: Agent registry can be rebuilt from agent
heartbeats



Fast restart: <5 seconds recovery time in testing

Horizontal scaling: Multiple Routing Agent instances possible for
high availability

High Availability Configuration:

For production deployments requiring continuous operation:

1. Active-Active Routing Agents: Multiple instances share load via
consistent hashing

2. Agent Registry Persistence: Optional external cache (Redis, etcd)
for faster recovery

3. Health Monitoring: Automated failover when routing agent becomes
unresponsive

4. Stateless Operation: No transaction state maintained; all routing
decisions from current agent registry

The alternative—peer-to-peer routing—creates:

N² connections (difficult to manage at scale)

No centralized observability

No centralized security enforcement

Uneven load distribution

Security Agent High Availability:

Similar stateless design principles apply to the Security Agent:

Policy Caching: Authorization policies cached at edge agents for
degraded-mode operation

Multiple Instances: Active-active deployment for load
distribution

Policy Updates: Distributed via message bus to all instances

Decision Audit: All authorization decisions logged regardless of
which instance serves them

This ensures the security layer does not become a single point of
failure any more than the routing layer.



Section 4: Agent Responsibility Boundaries

4.1 Single Responsibility Agent Design

Each agent in AYA has one primary responsibility.

AYA Agent Responsibilities:

Agent Responsibility Does NOT Do Typical
Latency

Routing
Agent

Message routing Business logic 2-5ms

LLM Agent Language model
operations

Data storage, error
handling

300-2000ms

SQL Agent Structured data
retrieval

Content generation 20-80ms

Cache
Manager

Key-value caching Database queries 2-8ms

Error Agent Error handling &
recovery

Logging (delegates to Log
Agent)

5-20ms

Log Agent Centralized logging Error handling (delegates
to Error Agent)

3-10ms

Monitor
Agent

Metrics & monitoring Business decisions 8-25ms

Security
Agent

Security &
authorization

Message routing 15-40ms

Connection
Agent

External system
integration

Internal business logic Varies

Latency Context: Times shown are agent processing time, not including
network overhead or downstream dependencies. LLM Agent latency
reflects current LLM provider TTFT (Time-to-First-Token)
characteristics.



4.2 Cross-Cutting Concern Delegation

Agents delegate cross-cutting concerns to specialized agents rather
than implementing them locally.

Figure 4: Cross-Cutting Concern Delegation

Benefits:

 

┌───────────────────────────────────────────────
│                        LLM Agent                                 │
│                                                                  │
│  async def generate_text(self, prompt):                         │
│      start_time = time.time()                                   │
│      try:                                                        │
│          result = await self._call_llm(prompt)                  │
│                                                                  │
│          # Delegate logging                                      │
│          await self.comm_bus.send_command(                      │
│              target_agent="log.agent",                          │
│              action="log_message",                               │
│              payload={"level": "INFO", "message": "Generated"}  │
│          )                                                       │
│                                                                  │
│          # Delegate metrics                                      │
│          await self.comm_bus.send_command(                      │
│              target_agent="monitor.agent",                      │
│              action="record_metric",                             │
│              payload={"metric": "llm_latency", "value": elapsed}│
│          )                                                       │
│                                                                  │
│          return result                                           │
│                                                                  │
│      except Exception as e:                                      │
│          # Delegate error handling                               │
│          await self.comm_bus.send_command(                      │
│              target_agent="error.agent",                        │
│              action="handle_error",                              │
│              payload={"error": str(e), "agent": self.agent_id}  │
│          )                                                       │
│          raise                                                   │
└───────────────────────────────────────────────



Benefit Impact

No code duplication Single implementation for each concern

Consistent implementation Uniform logging format, error handling

Single point of enhancement Update once, apply everywhere

Audit compliance Complete, centralized audit trail

Section 5: Security Architecture

5.1 The Security Agent

All security decisions in AYA flow through a single Security Agent.

Rationale: Distributed security implementations create attack
surfaces that scale with agent count. A single compromised security
check can potentially cascade through the system [13].

Security Agent Responsibilities:

Function Description

Authentication validation Verify identity claims

Authorization checks Enforce access policies

Rate limiting Prevent abuse

Audit logging Record security events

Threat detection Identify anomalous patterns

5.2 Zero Trust Between Agents

Agents do not implicitly trust each other. Every message is
validated.

Message Validation Flow:



1. Source agent sends message

2. Routing Agent forwards to Security Agent for validation

3. Security Agent checks permissions, rate limits

4. If authorized, message is routed to target

5. All interactions logged for audit trail

5.3 Compliance Support

Every agent action is auditable because every action is a message.

Common Control Requirements Support:

AYA's architecture supports common control requirements found in
compliance frameworks such as:

SOC2: Complete audit trail for access controls, change tracking

HIPAA: Patient data access logging, authorization enforcement

GDPR: User data processing audit trail, consent tracking

Important Clarification: AYA does not confer compliance by itself.
Organizations must implement appropriate controls, policies, and
operational procedures. The architecture provides technical
capabilities that support these requirements, but compliance is
achieved through holistic implementation including personnel
training, policy enforcement, and regular auditing beyond the system
architecture.

5.4 Security Limitations

┌─────────────┐      ┌─────────────┐      
┌─────────────┐
│   Source    │      │   Routing   │      │   Target    │
│   Agent     │──────│    Agent    │──────│   Agent     │
└─────────────┘      └──────┬──────┘      
└─────────────┘
                            │
                            │ Validate
                            ▼
                    ┌─────────────┐
                    │  Security   │
                    │   Agent     │
                    └─────────────┘



No security architecture is impenetrable. AYA's approach:

Reduces attack surface by centralizing security logic

Improves auditability by logging all interactions

Does not guarantee protection against all attack vectors

Security requires defense in depth, including network security, input
validation, and operational security practices beyond the
architecture itself.

Section 6: External System Integration

6.1 The Connection Agent

The Connection Agent serves as AYA's gateway to external systems.

Figure 5: Connection Agent Architecture



Capabilities:

 

┌───────────────────────────────────────────────
│                     AYA INTERNAL ARCHITECTURE                      │
│                                                                    │
│   ┌─────────┐    ┌─────────┐    
┌─────────────────────────────┐  │
│   │   LLM   │    │  SQL    │    │      Connection Agent       │  │
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Capability Description

Outbound REST API calls Make HTTP requests to external APIs

WebSocket connections Real-time bidirectional communication

Webhook handling Receive callbacks from external systems

Protocol translation Convert between internal and external formats

6.2 LLM Provider Integration

AYA supports multiple LLM providers through the LLM Agent and
Connection Agent:

Provider Type Integration Method

OpenAI/GPT Direct API integration

Anthropic/Claude Direct API integration

Local Models (Ollama, vLLM) Local endpoint connection

Azure OpenAI Enterprise endpoint support

AWS Bedrock Multi-model access

Section 7: Competing Solutions Analysis

7.1 Framework Landscape

Several frameworks address multi-agent coordination with different
design philosophies. Each framework optimizes for different use
cases:



Framework Architecture Style Positioning

LangChain Chain-based, modular Rapid prototyping with extensive tool
ecosystem

AutoGen Conversation-first Flexible collaboration patterns,
research-oriented

CrewAI Role-based teams Intuitive role assignment for business
workflows

LangGraph Graph-based workflows Visual debugging and explicit control
flow

MetaGPT Software company
metaphor

Code generation with defined development
roles

AYA Message-oriented Production deployment with architectural
constraints

7.2 Trade-off Analysis

Each framework makes different trade-offs appropriate for different
contexts:

LangChain Strengths:

Extensive integration ecosystem (database connectors, APIs, data
loaders)

Strong community support and documentation

Good for rapid prototyping and experimentation

LangChain Trade-offs:

Breaking changes across versions can impact production stability

Adds ~40% latency overhead vs native SDK calls (documented in
community benchmarks)

Complex abstraction layers can make debugging difficult

AutoGen Strengths:

Microsoft backing and active research development

Flexible async architecture



Rich conversational patterns

AutoGen Trade-offs:

Can consume 15× more tokens than single-agent approaches
(Anthropic research [7])

Debugging multi-agent conversations can be challenging

Coordination overhead increases with agent count

CrewAI Strengths:

Intuitive role-based design matches business mental models

Quick setup for standard workflows

Good for small teams

CrewAI Trade-offs:

Context overflow issues documented in complex multi-step tasks

SQLite3 backend limits scalability for high-throughput scenarios

Less control over fine-grained coordination

AYA Positioning:

AYA optimizes for production deployment constraints:

Architectural enforcement over best-practice guidelines

Clear observability and audit trails

Isolation and failure containment

Heterogeneous agent types for cost/performance optimization

AYA Trade-offs:

Higher initial setup complexity than rapid prototyping frameworks

Message bus overhead (~5-10ms per hop)

Learning curve for developers unfamiliar with message-oriented
patterns



7.3 Framework Comparison Table

Feature LangChain AutoGen CrewAI AYA

Primary Use Case Prototyping Research Business Production

Architecture Style Chains Conversations Roles Messages

Observability Moderate Low Low High

Coordination
Overhead

Moderate High Moderate Low-Moderate

Setup Complexity Low Moderate Low High

Failure Isolation Limited Limited Limited Strong

Token Efficiency Good Low Moderate High
(heterogeneous)

Community Size Large Medium Medium Small

Breaking Change
History

Frequent Moderate Low N/A (new)

Section 8: Implementation Considerations

8.1 Deployment Patterns

Development Environment:

In-memory message bus (asyncio.Queue, Python)

Single-node deployment

File-based logging

Staging Environment:

Redis Pub/Sub for message bus

Multi-node capability testing

Centralized logging (ELK, Datadog)

Production Environment:



NATS or Kafka for message bus (depending on throughput
requirements)

Horizontally scaled agents

Distributed tracing (OpenTelemetry)

High availability configuration for Routing and Security agents

8.2 Message Bus Technology Selection

The architecture is bus-implementation-agnostic. Common choices:

Technology Throughput Latency Persistence Best For

asyncio.Queue 50K+ msg/s <1ms No Development, testing

Redis Pub/Sub 100K+ msg/s 1-3ms Optional Medium-scale production

NATS 1M+ msg/s <1ms Optional High-throughput systems

Kafka 1M+ msg/s 5-10ms Yes Event sourcing, audit

RabbitMQ 50K+ msg/s 2-5ms Yes Complex routing logic

8.3 Cost Optimization Strategies

Multi-agent systems can be expensive due to LLM token consumption.
AYA's heterogeneous architecture enables:

1. Intelligent Routing: Check cache before invoking LLM

2. SQL First: Use structured queries for data retrieval when
possible

3. Intent Classification: Lightweight models determine if LLM is
needed

4. Response Caching: Cache common LLM responses

5. Batch Processing: Group similar requests when real-time not
required

Example Cost Reduction:

Traditional approach (every query hits LLM):

1,000 queries/day × $0.01/query = $10/day = $3,650/year



Heterogeneous approach (80% handled by cache/SQL):

200 LLM queries/day × $0.01/query = $2/day = $730/year

80% cost reduction

Section 9: Real-World Workflow Example

9.1 User Query Processing

Scenario: User asks "What were our Q4 2025 sales in California?"

Message Flow:

No LLM invoked. Total cost: infrastructure only (~$0.0001).

9.2 Complex Reasoning Request

Scenario: User asks "Analyze the trend in California sales and
recommend regions for expansion."

User Request
    │
    ▼
Intent Parser Agent (8ms)
    │ Classifies as: data_query, likely_cached=true
    │
    ▼
Cache Manager Agent (3ms)  
    │ Cache miss
    │
    ▼
SQL Agent (45ms)
    │ SELECT SUM(sales) FROM revenue WHERE quarter='Q4' AND state='CA' AND 
year=2025
    │ Returns: $12.5M
    │
    ▼
Response Formatter Agent (5ms)
    │ Formats: "Your Q4 2025 California sales were $12.5 million."
    │
    ▼
User Response (Total: 61ms)



Message Flow:

LLM invoked once. Cost: ~$0.008 (depending on model and token count).

This demonstrates how the heterogeneous architecture optimizes for
both performance and cost by routing to the appropriate agent type.

Section 10: Observability and Debugging

10.1 Centralized Logging

Every message passing through the bus can be logged:

User Request
    │
    ▼
Intent Parser Agent (8ms)
    │ Classifies as: analysis_required, needs_llm=true
    │
    ▼
SQL Agent (120ms)
    │ Retrieves 3-year California sales trend data
    │
    ▼
SQL Agent (85ms)  
    │ Retrieves comparison data for other states
    │
    ▼
Context Builder Agent (15ms)
    │ Structures data for LLM prompt
    │
    ▼
LLM Agent (1,400ms)
    │ Analyzes trends, generates recommendations
    │
    ▼
Response Formatter Agent (8ms)
    │
    ▼
User Response (Total: 1,636ms)

python



10.2 Distributed Tracing

Using trace_id field enables end-to-end request tracking:

10.3 Failure Diagnosis

When failures occur, the message log provides:

What happened: Error message and stack trace

Where: Which agent failed

When: Precise timestamp

Context: Full message payload and correlation ID

Upstream: Complete message chain leading to failure

This eliminates "debugging archaeology" common in tightly-coupled
systems.

# Monitor Agent receives all message events
{
  "timestamp": "2026-01-16T10:30:45.123Z",
  "message_id": "msg_abc123",
  "source": "intent.parser",
  "target": "cache.manager",
  "message_type": "query",
  "latency_ms": 3.2,
  "success": true
}

Request trace_id: trace_xyz789

1. [10:30:45.100] intent.parser → cache.manager (8ms)
2. [10:30:45.108] cache.manager → sql.agent (3ms) [cache miss]
3. [10:30:45.111] sql.agent → database (45ms)
4. [10:30:45.156] sql.agent → response.formatter (2ms)
5. [10:30:45.158] response.formatter → user (5ms)

Total: 63ms



Section 11: Limitations and Future Work

11.1 Known Limitations

1. Latency Overhead

The message bus adds 5-10ms per hop. For applications requiring sub-
millisecond response:

Direct function calls may be more appropriate

Consider hybrid architecture with message bus for cross-cutting
concerns only

2. Complexity for Simple Use Cases

A single-agent system with direct tool calling may be simpler and
sufficient for:

Proof-of-concept projects

Internal tools with limited user base

Well-scoped, single-domain problems

3. Token Consumption Overhead

Multi-agent coordination inherently consumes more tokens than single-
agent approaches. While our heterogeneous design mitigates this
through selective LLM usage, complex multi-step workflows still incur
coordination overhead. Anthropic research documents up to 15× token
consumption in coordination-heavy scenarios [7].

4. Message Bus as Potential Bottleneck

While message buses can handle high throughput (NATS: 1M+ msg/s),
poorly configured deployments or inadequate infrastructure can create
bottlenecks. Monitor bus performance and scale appropriately.

5. Learning Curve

Teams unfamiliar with message-oriented architecture or distributed
systems patterns face a steeper learning curve than frameworks with
simpler abstractions.

11.2 Open Research Questions

Agent Discovery and Registration:



How should dynamic agent discovery work in multi-region
deployments?

What's the optimal heartbeat frequency for agent health
monitoring?

Message Prioritization:

How should the routing agent handle priority queuing under load?

Should low-priority messages be dropped or delayed during system
stress?

Cross-Framework Interoperability:

Can AYA agents communicate with agents from other frameworks
(LangChain, AutoGen)?

What would a standard multi-agent communication protocol look
like?

Formal Verification:

Can we formally prove certain properties (e.g., message delivery
guarantees, isolation)?

What verification techniques apply to LLM-based agent systems?

11.3 Scalability Boundaries

Our testing has been limited to:

Up to 50 concurrent agents

Single-region deployment

Up to 10,000 messages/second sustained load

Production deployments at significantly larger scale (100+ agents,
multi-region, 50K+ msg/s) have not been validated. We hypothesize the
architecture will scale but require:

Message bus sharding or partitioning

Geo-distributed routing agents

More sophisticated load balancing



We welcome collaboration with organizations operating at these scales
to validate and extend the architecture.

Section 12: Conclusion

Multi-agent AI systems represent a significant shift in how we
architect AI applications. The empirical evidence—41-86.7% failure
rates, 40% project cancellation predictions—suggests that
architectural decisions matter as much as model selection.

The AYA architecture applies established distributed systems patterns
to multi-agent coordination:

Message-oriented architecture for isolation and observability

Centralized routing for system-wide coordination

Single-responsibility design for maintainability

Heterogeneous agent types for cost and performance optimization

This is not the only valid approach. For rapid prototyping,
frameworks like LangChain and CrewAI offer faster time-to-first-demo.
For research into agent collaboration patterns, AutoGen provides
flexibility to explore novel coordination mechanisms.

AYA optimizes for a specific set of requirements:

Production deployment with high reliability requirements

Enterprise environments requiring audit trails and compliance
support

Systems where architectural enforcement prevents common failure
modes

Cost-sensitive deployments benefiting from heterogeneous agent
types

The central thesis: Multi-agent AI systems fail not because LLMs
aren't capable, but because we apply single-agent architectural
patterns to multi-agent problems. Message-oriented architecture,
borrowed from decades of distributed systems research, provides a
foundation for systems that can scale beyond prototype.

We acknowledge this work represents early-stage exploration. The
architecture has not been validated at massive scale, independently



verified, or battle-tested across diverse production environments. We
offer it as a reference implementation and invite collaboration,
critique, and independent validation.

Appendix A: Glossary

Term Definition

Agent Autonomous software component with a specific
responsibility

Message Bus Infrastructure for asynchronous message passing
between agents

Pure Message
Architecture

Design constraint requiring all agent communication
via message bus

Routing Agent Centralized component managing message flow and
agent discovery

Capability Function or service an agent can provide

Heterogeneous Mesh System combining different agent types (LLM-based,
rule-based, hybrid)

TTFT Time-to-First-Token: latency for LLM to begin
generating response

Correlation ID Identifier linking request and response messages

Trace ID Identifier for distributed tracing across multiple
agent interactions

Idempotency Key Identifier ensuring duplicate messages are processed
only once

Appendix B: Message Schema (Full Specification)

See Section 2.3 for Python and JSON Schema representations.



Appendix C: Agent Capability Registry Example
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Appendix E: Benchmark Methodology

Test Environment

Component Specification

CPU 4 vCPU (Intel Xeon equivalent)

Memory 16 GB RAM

Storage SSD

Network Local (sub-millisecond latency)

OS Ubuntu 22.04 LTS

Python 3.11

Implementation Details

Message Bus:

Development/Testing: asyncio.Queue (Python standard library)

https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2307.07924
https://arxiv.org/abs/2304.03442
https://python.langchain.com/docs/
https://docs.crewai.com/


Staging: Redis Pub/Sub (redis-py 5.0)

Production recommendation: NATS or Kafka depending on throughput
requirements

Transport Layer:

In-process: asyncio Queue (zero-copy)

Inter-process: Unix domain sockets

Network: TCP with persistent connections

Serialization:

Format: JSON (Python's built-in json module)

Rationale: Human-readable, broadly compatible, sufficient
performance for tested loads

Alternative considered: MessagePack for higher throughput
scenarios

Delivery Semantics:

At-least-once delivery with broker acknowledgment

Retry logic: 3 attempts with exponential backoff (100ms, 200ms,
400ms)

Acknowledgment path: sender → broker → receiver → broker → sender
ACK

Agent Types in Test:

30% LLM agents (OpenAI GPT-4o, simulated 300-2000ms TTFT)

40% lightweight agents (rule-based, <10ms processing)

30% hybrid agents (conditional LLM usage)

Test Procedure

1. Warm-up: 1000 messages to initialize connections and caches

2. Baseline: 10,000 messages at sustained rate (all message types)

3. Burst: 1000 messages in rapid succession (stress test)

4. Mixed Workload: Combination of COMMAND, QUERY, EVENT messages
with realistic payload sizes



5. Recovery: Agent crash and restart scenarios (10 simulations per
agent type)

6. LLM Latency: Measured separately with actual LLM API calls (100
samples per provider)

Measurements

Message bus throughput: Messages successfully routed per second
(measured at broker)

Routing latency: Time from send to delivery confirmation
(excludes agent processing time)

Delivery rate: Percentage of messages successfully delivered
after retries

Recovery time: Time from agent crash detection to full service
restoration

End-to-end latency: Complete request-to-response time including
all hops and agent processing

Sample Sizes

Test Category Sample Size Runs

Throughput 100,000 messages per run 10 runs

Routing Latency 50,000 messages 5 sessions

Delivery Rate 1,000,000 messages Cumulative

Recovery 100 crash simulations Single session

End-to-End w/ LLM 500 complete workflows 3 sessions

Limitations

Single-node testing only: No multi-region or distributed
deployment testing

Controlled network conditions: Sub-millisecond latency, no packet
loss, no bandwidth constraints

Standard payload sizes: ~1KB average; large payloads (>100KB) not
tested



Limited concurrent agent count: Up to 50 agents; scalability
beyond this is theoretical

Self-testing: All tests conducted by AYA development team, not
independently verified

Simulated LLM latency: Some tests used simulated delays rather
than actual LLM API calls to control for provider variability

No adversarial testing: Security and abuse scenarios not
systematically tested

Reproducibility

Independent Validation Invitation:

We recognize these results reflect internal testing by the
development team and have not been independently verified. We
actively seek independent reproduction of these benchmarks and commit
to:

1. Providing full test harness and configuration within 48 hours of
request from academic researchers or independent evaluators

2. Answering methodology questions publicly via GitHub discussions
or research forums

3. Publishing validated results from independent parties alongside
our own findings

4. Supporting validation efforts with access to core contributors
for technical questions

Target: External validation within Q2 2026.

Contact for Validation Requests:

Email: research@trizz.ai

GitHub: https://github.com/trizz-ai/aya-benchmark (will be
published upon paper acceptance)

Test scripts and configuration are available to enterprise customers
and academic researchers. We welcome independent reproduction of
these benchmarks and will support validation efforts with full access
to methodology, code, and technical consultation.

mailto:research@trizz.ai
https://github.com/trizz-ai/aya-benchmark
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